
18.100A MIDTERM EXAM
Thursday 22nd 2018, 9:35 - 10:50 am

1. (20 points) Determine whether the following statements are true or false.
If true then prove it, and if false then provide a counterexample.

(1) Suppose that {an} is bounded and an 6= −1. Then,
{ 1

1 + an

}
is also

bounded.

(2) Suppose that f(x) is defined for x ≈ 0, and xf(x) is continuous at 0.
Then, f(x) is also continuous at 0.

Proof for (1). False : If an = −1+ 1
n , then 1

1+an
= n→ +∞ as n→ +∞. �

Proof for (2). False : If f(x) = 1 for x 6= 0 and f(0) = 0, then xf(x) = x for
x ∈ R, which is continuous on R. However, f(x) is discontinuous at 0. �

Comments: For (2), a counter example f(x) should be defined at x = 0.
If not, xf(x) is not defined at x = 0 and thus it is discontinuous at x = 0.

For example, if f(x) = 1/x, then lim
x→0

xf(x) = lim
x→0

= 1. However, the

existence of a limit does not imply the continuity.
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2. (25 points) Let an+1 = 2 +
√
an and a0 > 4. Prove that the sequence

{an} is convergent, and the limit is 4.(
Hint: x−

√
x− 2 = (

√
x− 2)(

√
x+ 1).

)
Proof. a0 > 4 implies a1 = 2 +

√
a0 > 2 +

√
4 = 4. Assume ak > 4 for

some integer k, then ak+1 = 2 +
√
ak > 2 +

√
4 = 4. By the mathematical

induction, we have an > 4 for all n ∈ N.

Next, for each n, an > 4 implies

an − an+1 = an − 2−
√
an = (

√
an − 2)(

√
an + 1) > 0,

namely an > an+1 holds for every n. In conclusion, an is decreasing and
bounded below by 4. Hence, the completeness property guarantees
the convergence of an.

Let L = lim an. Then,

an = (
√
an)2 = (−2 + an+1)

2 = 4− 4an+1 + a2n+1.

Since an+1 converges to L, a2n+1 converges to L2 by the limit product rule.
Thus,

L = lim an = lim 4− 4a2n+1 + a2n+1

= 4− 4 lim an+1 + lim a2n+1 = 4− 4L+ L2,

by the linearity of the limits. So, 0 = L2 − 5L + 4 = (L − 4)(L − 1). The
limit location theorem and an > 4 show L ≥ 4. Hence, we have L = 4. �

Comments: Theorem 5.1 in the textbook does not guarantees the conver-
gence of

√
an for a positive convergent sequence an. Actually, it was the

problem 2 in the second problem set. So, one should show lim
√
an+1 =

√
L

to use it.
Most students directly used lim

√
an+1 =

√
L, and lost 3 points. If one

cited the problem 2 in Pset 2 without a proof, he or she lost 1 point.
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3. (25 points) Suppose that S is a non-empty bounded set with inf S ≥ 0,
and let S2 be the set S2 = {s2 : s ∈ S}. Prove that supS2 = (supS)2.

Proof. If supS = 0, then S is the single element set {0}. So, S2 = {0} and
supS2 = (supS)2 = 0.

We consider the other case : supS > 0.
Since S is bounded, supS and inf S exist and 0 = inf S ≤ s ≤ supS for

all s ∈ S. Therefore, we have 0 ≤ s2 ≤ (supS)2. Hence, S2 is bounded and

supS2 ≤ (supS)2.

Since supS > 0, there exists an element 0 < s1 ∈ S. Then, for any s ∈ S
with s1 ≤ s, the definition s2 ≤ supS2 yields

s ≤ supS2

s
≤ supS2

s1
.(1)

Therefore, we have

s ≤ supS2

s1

for all s ∈ S, namely supS ≤ supS2/s1. Since supS > 0, we have

s1 ≤
supS2

supS
,

for all 0 < s1 ∈ S. Hence, supS ≤ supS2/ supS, namely (supS)2 ≤ supS2.
In conclusion, supS2 = (supS)2.

�

Comments: So many students deduced directly from s ≤ supS2/s that
supS2/s is an upper bound. However, supS2/s varies as s varies. However,
an upper bound is a fixed number. So, it is necessary to consider a fixed
value supS2/s1 as (1).
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4. (10 points) Find the radius of convergence of the power series
∞∑
n=0

2nn2x2n,

and explain why.

Proof. Set an = 2nn2x2n. Then, if x 6= 0∣∣∣an+1

an

∣∣∣ = 2x2
(

1 +
1

n

)2
.

By Theorem 5.1 and lim 1
n = 0, we have

lim
∣∣∣an+1

an

∣∣∣ = 2x2.

Hence, by the ratio test, the power series is convergent if 2x2 < 1 and
divergent if 2x2 > 1. (It is inconclusive if 2x2 = 1.) Namely, it is convergent
if |x| < 1/

√
2 and divergent if |x| > 1/

√
2. So, 1/

√
2 is the radius of

convergence.
�

Comments: One should mention that it diverges if |x| > 1/
√

2.
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5. (20 points) Let f(x) be an increasing function defined for x ∈ (−∞,+∞).
Suppose that given any two rational numbers r, q ∈ Q, we have

|f(r)− f(q)| ≤ |r − q|.
Prove that f(x) is continuous on R.

(You may need to use that fact that given any two different real numbers
x < y, there exists a rational number r such that x < r < y.)

Proof. Given x0 ∈ R, there exist two sequences of rational numbers an, bn ∈
Q with n ∈ N such that x0 − 1

n < an < x0 and x0 < bn < x0 + 1
n .

Since f(x) is increasing, for x ∈ (an, bn) the following holds

|f(x)− f(x0)| ≤ |f(an)− f(bn)|.
Moreover, by definition of an, bn we have

|f(an)− f(bn)| = |an − bn| ≤
∣∣∣(x0 − 1

n
)− (x0 +

1

n
)
∣∣∣ =

2

n
.

In conclusion, given ε > 0, we have |f(x)−f(x0)| < ε for x ∈ (x0−δ, x0+δ)
where δ = min{|x0 − aN |, |x0 − bN |} for some N > 2/ε. Namely, f is
continuous at any x0 ∈ R. So, f(x) is continuous on R.

�

Comments: In the last line of the proof above, (x0 − δ, x0 + δ) ⊂ (aN , bN )
by δ = min{|x0 − aN |, |x0 − bN |}. Hence, in the δ-neighborhood, we have
|f(x)− f(x0)| ≤ |f(aN )− f(bN )| ≤ 2/N < ε.
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6.(10 points, bonus problem) Let f(x) be defined for x ∈ (−∞,+∞). Sup-
pose that given any two real numbers x, y ∈ R

tf(x) + (1− t)f(y) ≥ f(tx+ (1− t)y),(∗)
holds for all t ∈ [0, 1]. Prove that f(x) is continuous on R.

(We say f(x) is a convex function if (∗) holds.)

Proof. Given x0 ∈ R, we define

g(x) =f(x0) +
(
f(x0 + 1)− f(x0)

)
(x− x0),

h(x) =f(x0) +
(
f(x0)− f(x0 − 1)

)
(x− x0).

Then, for t ∈ [0, 1]

g(x0 + t) = tf(x0 + 1) + (1− t)f(x0) ≥ f(x0 + t).

Also, we have

1

1 + t
f(x0 + t) +

t

1 + t
f(x0 − 1) ≥ f

(x0 + t

1 + t
+
tx0 − t
1 + t

)
= f(x0),

and thus

h(x0 + t) = (1 + t)f(x0)− tf(x0 − 1) ≤ f(x0 + t).

Since lim
t→0

g(x0 + t) = lim
t→0

h(x0 + t) = f(x0), the squeeze theorem shows

that lim
x→x+

0

f(x) = f(x0).

In the same manner, we can show g(x0 − t) ≤ f(x0 − t) ≤ h(x0 − t) for
t ∈ [0, 1]. So, the squeeze theorem shows lim

x→x−
0

f(x) = f(x0). Therefore,

f(x) is continuous at any x0 ∈ R. Hence, f(x) is continuous on R.
�

Comments: To understand the idea of the proof above, draw the graphs of
f, g, h. The given condition means that if the graph of f(x) intersects with
a line at two point (a, f(a)) and (b, f(b)), then f(x) is less than or equal to
the y-value of the line on the interval [a, b]. However, f(x) is grater than or
equal to the y-value of the line out of the interval [a, b].

Now, the graphs of g, h are two lines cross at (x0, f(x0)). Hence, one can
use the squeeze theorem by using the two lines.


