18.100A MIDTERM EXAM

Thursday 22nd 2018, 9:35-10:50 am

1. (20 points) Determine whether the following statements are true or false. If true then prove it, and if false then provide a counterexample.
(1) Suppose that $\left\{a_{n}\right\}$ is bounded and $a_{n} \neq-1$. Then, $\left\{\frac{1}{1+a_{n}}\right\}$ is also bounded.
(2) Suppose that $f(x)$ is defined for $x \approx 0$, and $x f(x)$ is continuous at 0 . Then, $f(x)$ is also continuous at 0 .

Proof for (1). False : If $a_{n}=-1+\frac{1}{n}$, then $\frac{1}{1+a_{n}}=n \rightarrow+\infty$ as $n \rightarrow+\infty$.
Proof for (2). False : If $f(x)=1$ for $x \neq 0$ and $f(0)=0$, then $x f(x)=x$ for $x \in \mathbb{R}$, which is continuous on \mathbb{R}. However, $f(x)$ is discontinuous at 0 .

Comments: For (2), a counter example $f(x)$ should be defined at $x=0$. If not, $x f(x)$ is not defined at $x=0$ and thus it is discontinuous at $x=0$.

For example, if $f(x)=1 / x$, then $\lim _{x \rightarrow 0} x f(x)=\lim _{x \rightarrow 0}=1$. However, the existence of a limit does not imply the continuity.
2. (25 points) Let $a_{n+1}=2+\sqrt{a_{n}}$ and $a_{0}>4$. Prove that the sequence $\left\{a_{n}\right\}$ is convergent, and the limit is 4 .
(Hint: $x-\sqrt{x}-2=(\sqrt{x}-2)(\sqrt{x}+1)$.)

Proof. $a_{0}>4$ implies $a_{1}=2+\sqrt{a_{0}}>2+\sqrt{4}=4$. Assume $a_{k}>4$ for some integer k, then $a_{k+1}=2+\sqrt{a_{k}}>2+\sqrt{4}=4$. By the mathematical induction, we have $a_{n}>4$ for all $n \in \mathbb{N}$.

Next, for each $n, a_{n}>4$ implies

$$
a_{n}-a_{n+1}=a_{n}-2-\sqrt{a_{n}}=\left(\sqrt{a_{n}}-2\right)\left(\sqrt{a_{n}}+1\right)>0
$$

namely $a_{n}>a_{n+1}$ holds for every n. In conclusion, a_{n} is decreasing and bounded below by 4 . Hence, the completeness property guarantees the convergence of a_{n}.

Let $L=\lim a_{n}$. Then,

$$
a_{n}=\left(\sqrt{a_{n}}\right)^{2}=\left(-2+a_{n+1}\right)^{2}=4-4 a_{n+1}+a_{n+1}^{2}
$$

Since a_{n+1} converges to L, a_{n+1}^{2} converges to L^{2} by the limit product rule. Thus,

$$
\begin{aligned}
L=\lim a_{n} & =\lim 4-4 a_{n+1}^{2}+a_{n+1}^{2} \\
& =4-4 \lim a_{n+1}+\lim a_{n+1}^{2}=4-4 L+L^{2},
\end{aligned}
$$

by the linearity of the limits. So, $0=L^{2}-5 L+4=(L-4)(L-1)$. The limit location theorem and $a_{n}>4$ show $L \geq 4$. Hence, we have $L=4$.

Comments: Theorem 5.1 in the textbook does not guarantees the convergence of $\sqrt{a_{n}}$ for a positive convergent sequence a_{n}. Actually, it was the problem 2 in the second problem set. So, one should show $\lim \sqrt{a_{n+1}}=\sqrt{L}$ to use it.

Most students directly used $\lim \sqrt{a_{n+1}}=\sqrt{L}$, and lost 3 points. If one cited the problem 2 in Pset 2 without a proof, he or she lost 1 point.
3. (25 points) Suppose that S is a non-empty bounded set with $\inf S \geq 0$, and let S^{2} be the set $S^{2}=\left\{s^{2}: s \in S\right\}$. Prove that $\sup S^{2}=(\sup S)^{2}$.

Proof. If $\sup S=0$, then S is the single element set $\{0\}$. So, $S^{2}=\{0\}$ and $\sup S^{2}=(\sup S)^{2}=0$.

We consider the other case : $\sup S>0$.
Since S is bounded, $\sup S$ and $\inf S$ exist and $0=\inf S \leq s \leq \sup S$ for all $s \in S$. Therefore, we have $0 \leq s^{2} \leq(\sup S)^{2}$. Hence, S^{2} is bounded and

$$
\sup S^{2} \leq(\sup S)^{2}
$$

Since $\sup S>0$, there exists an element $0<s_{1} \in S$. Then, for any $s \in S$ with $s_{1} \leq s$, the definition $s^{2} \leq \sup S^{2}$ yields

$$
\begin{equation*}
s \leq \frac{\sup S^{2}}{s} \leq \frac{\sup S^{2}}{s_{1}} \tag{1}
\end{equation*}
$$

Therefore, we have

$$
s \leq \frac{\sup S^{2}}{s_{1}}
$$

for all $s \in S$, namely $\sup S \leq \sup S^{2} / s_{1}$. Since $\sup S>0$, we have

$$
s_{1} \leq \frac{\sup S^{2}}{\sup S}
$$

for all $0<s_{1} \in S$. Hence, $\sup S \leq \sup S^{2} / \sup S$, namely $(\sup S)^{2} \leq \sup S^{2}$.
In conclusion, $\sup S^{2}=(\sup S)^{2}$.

Comments: So many students deduced directly from $s \leq \sup S^{2} / s$ that $\sup S^{2} / s$ is an upper bound. However, $\sup S^{2} / s$ varies as s varies. However, an upper bound is a fixed number. So, it is necessary to consider a fixed value $\sup S^{2} / s_{1}$ as (1).
4. (10 points) Find the radius of convergence of the power series $\sum_{n=0}^{\infty} 2^{n} n^{2} x^{2 n}$, and explain why.

Proof. Set $a_{n}=2^{n} n^{2} x^{2 n}$. Then, if $x \neq 0$

$$
\left|\frac{a_{n+1}}{a_{n}}\right|=2 x^{2}\left(1+\frac{1}{n}\right)^{2} .
$$

By Theorem 5.1 and $\lim \frac{1}{n}=0$, we have

$$
\lim \left|\frac{a_{n+1}}{a_{n}}\right|=2 x^{2}
$$

Hence, by the ratio test, the power series is convergent if $2 x^{2}<1$ and divergent if $2 x^{2}>1$. (It is inconclusive if $2 x^{2}=1$.) Namely, it is convergent if $|x|<1 / \sqrt{2}$ and divergent if $|x|>1 / \sqrt{2}$. So, $1 / \sqrt{2}$ is the radius of convergence.

Comments: One should mention that it diverges if $|x|>1 / \sqrt{2}$.
5. (20 points) Let $f(x)$ be an increasing function defined for $x \in(-\infty,+\infty)$.

Suppose that given any two rational numbers $r, q \in \mathbb{Q}$, we have

$$
|f(r)-f(q)| \leq|r-q| .
$$

Prove that $f(x)$ is continuous on \mathbb{R}.
(You may need to use that fact that given any two different real numbers $x<y$, there exists a rational number r such that $x<r<y$.)

Proof. Given $x_{0} \in \mathbb{R}$, there exist two sequences of rational numbers $a_{n}, b_{n} \in$ \mathbb{Q} with $n \in \mathbb{N}$ such that $x_{0}-\frac{1}{n}<a_{n}<x_{0}$ and $x_{0}<b_{n}<x_{0}+\frac{1}{n}$.

Since $f(x)$ is increasing, for $x \in\left(a_{n}, b_{n}\right)$ the following holds

$$
\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f\left(a_{n}\right)-f\left(b_{n}\right)\right| .
$$

Moreover, by definition of a_{n}, b_{n} we have

$$
\left|f\left(a_{n}\right)-f\left(b_{n}\right)\right|=\left|a_{n}-b_{n}\right| \leq\left|\left(x_{0}-\frac{1}{n}\right)-\left(x_{0}+\frac{1}{n}\right)\right|=\frac{2}{n} .
$$

In conclusion, given $\epsilon>0$, we have $\left|f(x)-f\left(x_{0}\right)\right|<\epsilon$ for $x \in\left(x_{0}-\delta, x_{0}+\delta\right)$ where $\delta=\min \left\{\left|x_{0}-a_{N}\right|,\left|x_{0}-b_{N}\right|\right\}$ for some $N>2 / \epsilon$. Namely, f is continuous at any $x_{0} \in \mathbb{R}$. So, $f(x)$ is continuous on \mathbb{R}.

Comments: In the last line of the proof above, $\left(x_{0}-\delta, x_{0}+\delta\right) \subset\left(a_{N}, b_{N}\right)$ by $\delta=\min \left\{\left|x_{0}-a_{N}\right|,\left|x_{0}-b_{N}\right|\right\}$. Hence, in the δ-neighborhood, we have $\left|f(x)-f\left(x_{0}\right)\right| \leq\left|f\left(a_{N}\right)-f\left(b_{N}\right)\right| \leq 2 / N<\epsilon$.
6.(10 points, bonus problem) Let $f(x)$ be defined for $x \in(-\infty,+\infty)$. Suppose that given any two real numbers $x, y \in \mathbb{R}$

$$
\begin{equation*}
t f(x)+(1-t) f(y) \geq f(t x+(1-t) y) \tag{*}
\end{equation*}
$$

holds for all $t \in[0,1]$. Prove that $f(x)$ is continuous on \mathbb{R}.
(We say $f(x)$ is a convex function if $(*)$ holds.)

Proof. Given $x_{0} \in \mathbb{R}$, we define

$$
\begin{aligned}
& g(x)=f\left(x_{0}\right)+\left(f\left(x_{0}+1\right)-f\left(x_{0}\right)\right)\left(x-x_{0}\right) \\
& h(x)=f\left(x_{0}\right)+\left(f\left(x_{0}\right)-f\left(x_{0}-1\right)\right)\left(x-x_{0}\right)
\end{aligned}
$$

Then, for $t \in[0,1]$

$$
g\left(x_{0}+t\right)=t f\left(x_{0}+1\right)+(1-t) f\left(x_{0}\right) \geq f\left(x_{0}+t\right)
$$

Also, we have

$$
\frac{1}{1+t} f\left(x_{0}+t\right)+\frac{t}{1+t} f\left(x_{0}-1\right) \geq f\left(\frac{x_{0}+t}{1+t}+\frac{t x_{0}-t}{1+t}\right)=f\left(x_{0}\right)
$$

and thus

$$
h\left(x_{0}+t\right)=(1+t) f\left(x_{0}\right)-t f\left(x_{0}-1\right) \leq f\left(x_{0}+t\right)
$$

Since $\lim _{t \rightarrow 0} g\left(x_{0}+t\right)=\lim _{t \rightarrow 0} h\left(x_{0}+t\right)=f\left(x_{0}\right)$, the squeeze theorem shows that $\lim _{x \rightarrow x_{0}^{+}} f(x)=f\left(x_{0}\right)$.

In the same manner, we can show $g\left(x_{0}-t\right) \leq f\left(x_{0}-t\right) \leq h\left(x_{0}-t\right)$ for $t \in[0,1]$. So, the squeeze theorem shows $\lim _{x \rightarrow x_{0}^{-}} f(x)=f\left(x_{0}\right)$. Therefore, $f(x)$ is continuous at any $x_{0} \in \mathbb{R}$. Hence, $f(x)$ is continuous on \mathbb{R}.

Comments: To understand the idea of the proof above, draw the graphs of f, g, h. The given condition means that if the graph of $f(x)$ intersects with a line at two point $(a, f(a))$ and $(b, f(b))$, then $f(x)$ is less than or equal to the y-value of the line on the interval $[a, b]$. However, $f(x)$ is grater than or equal to the y-value of the line out of the interval $[a, b]$.

Now, the graphs of g, h are two lines cross at $\left(x_{0}, f\left(x_{0}\right)\right)$. Hence, one can use the squeeze theorem by using the two lines.

